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� The safety of groundwater usage in seashore area was concerned in Taiwan.
� We proposed a data mining approach on discovering knowledge from groundwater monitoring data.
� Integrating HCA with PCA method could find out the reasons resulting in biological toxicity.
� GIS combined with the Kriging method visualize the spatial patterns of groundwater quality.
� As3+ is possibly main contributor to biological toxicity compared to disinfection by-products.
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To ensure the safety of groundwater usage in a seashore area where seawater incursion and unexpected
leakage are taking place, this paper utilizes the Microtox test to quantify the biological toxicity of ground-
water and proposes an integrated data analysis procedure based on hierarchical cluster analysis (HCA)
and principal component analysis (PCA) for determining the key environmental factors that may result
in the biological toxicity, together with the spatial risk pattern associated with groundwater usage. For
these reasons, this study selects the coastal area of Taichung city in Central Taiwan as an example and
implements a monitoring program with 40 samples. The results indicate that the concentration of total
arsenic in the coastal areas is about 0.23–270.4 lg L�1, which is obviously higher than the interior of
Taichung city. Moreover, the seawater incursion and organic pollution in the study area may be the
key factors resulting in the incubation of toxic substances. The results also indicate that As3+ is the main
contributor to biological toxicity compared to other disinfection by-products. With the help of the visu-
alized spatial pollutants pattern of groundwater, an advanced water quality control plan can be made.

Crown Copyright � 2014 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The availability of adequate fresh water is a fundamental
requirement for the environmental sustainability of a human com-
munity of any size. The dramatic changes of societal complexity
due to intensive interactions among stakeholders in agricultural,
industrial, and municipal sectors compound water resource alloca-
tion and redistribution in many watersheds that are increasingly
being managed for multiple objectives. Accelerating demand on
water resources for municipal, agricultural and industrial use
caused by rapid economic development and improvements in liv-
ing standards has placed a serious stress on the national water
supply.
Like most countries in the word, Taiwan is considered as an area
with insufficient water resources due to inherent environmental
limitations such as steep terrain and extremely uneven rainfall.
According to long-term observations, about 80% of rainfall occurs
between April and September. Such extremely uneven stream
flows between dry and wet seasons in Taiwan result in the devel-
opment of reservoirs and weirs for conservation of water resources
in almost all river basins. At present, there are about 53 reservoirs
and 60 large weirs existing in Taiwan. These existing hydraulic
facilities not only play an important role in water allocation but
also obstruct the usage of stream flow in the downstream area dur-
ing the dry season. To satisfy the need of water resources for mu-
nicipal, agricultural and industrial use, groundwater has become
the most important water resource, especially in the coastal area
of West Taiwan. Given this fact, the increased usage of groundwa-
ter has caused excessive drawdown and land subsidence in many
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coastal areas (Burnett et al., 2001; Stiros, 2001; Carbognin et al.,
2004; Phien-wej et al., 2006).

The mixing of groundwater and saline water further compli-
cates the hydro geochemical processes in the coastal aquifer
(Moore, 1999; Helena et al., 2000; Kistemann et al., 2008). Such
hydrologic conditions increased the anxiety of environmentalists
about degraded water quality and groundwater conservation, and
also resulted in difficulty in determining the environmental situa-
tion by gathering data from monitoring programs without any sup-
port by sophisticated data analysis techniques. Being capable of
providing meaningful insight from large and chaotic data sets with
a large number of parameters, multivariate statistical techniques
are broadly utilized to evaluate the spatial patterns of pollutant
concentration in groundwater (van den Brink et al., 2007; Belkhiri
et al., 2010; Yidana et al., 2010), to assess the quality of groundwa-
ter resources by integrating the water quality index (Omo-Irabor
et al., 2008; Ahmed Baig et al., 2010), and to resolve hydrological
factors such as aquifer boundaries, groundwater flow paths and
hydro-chemical parameters (Garcia Pereira et al., 2003; Halim
et al., 2010). These applications are valuable for indicating tempo-
ral and spatial variations of groundwater quality caused by nature
and anthropogenic factors for advanced governing controls.

Principal component analysis (PCA) is one of the common mul-
tivariate statistical techniques that are used to achieve great effi-
ciency of data compression from the original data as well as to
indicate natural associations between samples and/or variables
(Wenning and Erickson, 1994; Astel et al., 2007) by gaining some
information useful in the interpretation of the environmental sys-
tem. PCA consists of diagonalization of the covariance or correla-
tion matrix transforming the original measurements into linear
combinations of these measurements, and then the explained var-
iance of each principal component can be maximized. It has been
widely used to reveal the relationships among variables as well
as to classify them into different latent variables, so that some spe-
cial features inherent in the measured system can be characterized
(Lautre and Fernandez, 2004; Macciotta et al., 2006; Chen et al.,
2007; Lucas et al., 2008). For example, the integrated PCA and
HCA technologies are used to quantify the health risk of pollutants
in drinking water usage as well as to identify the pollution sources
for advanced control (Shah and Shaheen, 2008). Recently, many
comprehensive approaches consisting of PCA and other data anal-
ysis technologies such as geographic information systems (GIS)
and hierarchical cluster analysis (HCA) are also proposed to solve
environmental problems with spatial characteristics (Zhou et al.,
2007; Lima et al., 2010).

Today, groundwater in this area is almost no longer used for
drinking or cooking, but is still being used for aquaculture or
non-drinking water such as bathing after simple disinfection. Thus,
in order to prevent exposing the public to toxic substances, govern-
ment officials deem it imperative to determine the potential risk
map for advanced groundwater quality control (Sekhar et al.,
2003). For these reasons, this study presents a monitoring program
in the seashore area of Taichung city, together with a toxic test, to
measure the toxic potentiality under different physical and chem-
ical environments. The simplest method of risk mapping is simply
focusing on the spatial position and environmental characteristics
of sites (Peterson, 2006). The spatial distribution of environmental
parameters is displayed in the ‘‘risk map’’ and in the preliminary
evaluation of the risk of water use. Meanwhile, integrated multi-
variate analysis consisting of PCA and HCA is used to explain the
spatial correlation of groundwater samples among monitoring sta-
tions with a large number of environmental variables. To present
the spatial patterns of pollutants, the Kriging method (Todini and
Ferraresi, 1996; Lark, 2000) was utilized to make the risk map.
With this understanding of the spatial variance in groundwater
quality, potential effects of changes in environmental pressures
can be assessed, and necessary abatement actions to sustain usable
water supplies can be identified.
2. Methodology

2.1. Background introduction and sampling design

This paper selects the seashore area of Taichung city, located in
central Taiwan, as a case study. The east of the site is connected to
the Greater Taichung Metropolitan area with a population of
1.5 million. To the west of the study area, next to the coast line
of the Taiwan Strait, is the Taichung coal-fired power plant and
Taichung harbor. Within the study area, there is a conventional
industry complex named the Guan-Lian industry complex, which
has been heavily operated for about 30 years. The study area is fac-
ing the threats of saltwater intrusion and unexpected leakages
from industrial waste. To evaluate the spatial variance of ground-
water quality as well as profiling a risk map, a total of thirty-nine
sampling sites, as shown in Fig. 1, were collected all over the area
of concern. They are water-wells with depths varying from 20 to
80 m using standard sampling procedures (Eaton et al., 2005) dur-
ing the dry season (October–May) in 2011; there are ten, sixteen,
and thirteen sampling sites located in the Shalu district, Wuchi dis-
trict, and Longjing district, respectively. In the study area, the high
groundwater table and quantity in the wet season may dilute the
contributor concentrations of toxic substances, and the seawater
intrusion with higher Cl� concentration is more serious as well,
so the sampling data in the dry season was investigated by our
integrated multivariate analysis method. From the concentration
of chlorite, it is believed that seawater incursion is happening in
this area.
2.2. Laboratory analysis and sample characterization

To characterize the groundwater quality in reference to the
need for health risk management (Kuo et al., 1998), some charac-
teristic variables of groundwater including non-purgeable dis-
solved organic carbon (NPDOC), Cl�, pH, DO, As3+, As5+, turbidity,
conductivity, humic substances (H.S.), trihalomethanes (THMs)
and haloacetic acids (HAAs) were selected and measured in this
study, together with a Microtox test. The measurement of dis-
solved oxygen (DO) is one of common indicator to evaluate water
quality, which is a measure of how much oxygen is dissolved in the
water and measured in milligrams per liter (mg L�1). All samples
were analyzed for the main chemical descriptors by referring to
standard methods (Eaton et al., 2005). DO, temperature, pH and
electrical conductivity (EC) were measured in cell sensors, and that
sensors were calibrated with standard solutions (all from Merck).
The determination of inorganic arsenic species, As3+and As5+, was
done using the high-performance liquid chromatography (HPLC)
with inductively coupled plasma mass spectrometry (ICP-MS)
analysis (Perkin–Elmer Sciex-6100 Elan DRC II ICP/MS). The water
sample was loaded into the sample loop and then injected on a
separation column, and the arsenic species were eluted from the
separation column. For organic parameters analysis, water samples
were first filtered through 0.45 lm membrane filter. NPDOC was
measured by the combustion–infrared method using a total organ-
ic carbon analyzer (Model TOC-5000, Shimadzu, Tokyo, Japan).
Species of THMs were measured by purge-and-trap injection sys-
tem (Purge & Trap 4560) coupled with gas chromatography–mass
spectrometry (GC/MS) (Agilent 6890N/5973). Species of HAAs
measurements involved liquid/liquid extraction with MTBE
(Methyl t-butyl ether) and esterification step with diazomethane
before gas chromatography/electron capture detection (GC/ECD)
(Varian 3800) analysis.



Fig. 1. Systematic environment and spatial distribution of monitoring stations in study area.

Table 1
Chemical characteristic of groundwater samples.

Variable (unit) Min Max Average Standard deviation

NPDOC (mg L�1) 0.26 9.03 1.61 1.61
Cl� (mg L�1) 8.20 500.00 51.71 95.52
DO (mg L�1) 1.85 6.73 4.54 1.17
Turbidity (NTU) 0.28 10.00 1.44 2.14
Conductivity (lS cm�1) 328.0 8607.0 839.1 1439.8
H.S. (mg L�1) 0.09 2.40 0.55 0.49
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Besides the above potential toxic contribution, the biologic tox-
icity is one of several important indexes to characterize the
groundwater quality. However, the biological toxicity is a compre-
hensive index and its potential contribution could be attributed to
the complicated groundwater characteristic variables such as inor-
ganic metal, organic contaminants and their by-products (Marjorie
Aelion and Davis, 2007). Because the Microtox acute toxicity sen-
sor can quantify the biological toxicity of a sample by detecting
the changes in natural bioluminescence caused by Vibrio fischeri,
it is applied to this study to distinguish the biological toxic levels
at different sampling sites. The Microtox test utilized in this study
involves an SDI Model 500 analyzer and lyophilized cultures of
Vibrio fischer NRRL-B-11177 (Bioresource Collection and Research
Center, Hsinchu, Taiwan), in which the inhibition of bacterial light
emissions was evaluated in duplicate experiments at 15 �C, follow-
ing exposure for 15, 30 and 60 min. Solutions of the extract at five
concentrations in a geometric sequence that had been exchanged
with Milli-Q water were analyzed, starting with a 100x concentra-
tion factor by diluting 0.5 mL extract with an equal volume of the
bacterial suspension. The results of the Microtox test were pre-
sented as EC50, which is the effective concentration required to re-
duce the light output by the organism by 50%. The EC50 values and
the corresponding confidence intervals were calculated (95%)
using the Log-normal model in the REGTOX software application
for Microsoft Excel. In the experiment, three EC50 values were cal-
culated after 15, 30 and 60 min and were denoted as the 15-min
EC50, 30-min EC50 and 60-min EC50, respectively.
pH 5.72 8.60 7.08 0.76
As3+ (lg L�1) 0.00 56.00 4.10 11.11
As5+(lg L�1) 0.13 270.40 19.07 49.83
THMs (lg L�1) 12.94 3858.98 139.83 595.90
HAAs (lg L�1) 21.71 2131.21 102.66 325.91
Biological toxicity (EC50) 0.00 4.57 0.53 1.00

Note: THMs = trihalomethanes; H.S. = humic substances.
2.3. Causal analysis of biological toxicity and its spatial pollutant
pattern

More and more spatial-temporal data for pollutants are becom-
ing available due to increasing monitoring programs. If some
useful information inherent in these data can be explored by data
mining technologies, it will help decision makers to outline the
environmental situations and to plan advantageous strategies for
groundwater conservation. In this respect, the PCA approach is uti-
lized in this study to simplify high dimensional variables while
retaining most of the primary information, as well as to integrate
some individual variables into comprehensive factors which stand
for a kind of conceptual environmental characteristic. Followed by
HCA, the monitored data with specified similarity can be simplified
into several groups for better insight.

The basis of PCA has been well-explained by (Jolliffe, 2002).
Briefly, PCA is used for characterizing patterns within large sets
of data by re-expressing to a rotated coordinate system in which
as much variance as possible is explained by the first few dimen-
sions, in which the eigenvectors of the variance covariance matrix
are calculated, so that the principal component score, i.e. the
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weight of the eigenvector can be obtained. The scores of the origi-
nal variables, also called principal component loadings (PC load-
ings), can be used to indicate the relationship between the
variable and the principal component. In other words, the variable
and the principal component will be more strongly related if the PC
loading is larger. By doing this, the raw data matrix can be reduced
to two or three principal component loadings that account for the
majority of the variance. Thus, these factors can be used to account
approximately for the required information, just as the original
observations do.
(a) Humic substance

(c) As3+

(e) THMs 

Fig. 2. The spatial distribution of me
HCA is utilized to explore the spatial relationships among the
objects by examining their distances, and then a graphic display
of how these objects are clustered can be obtained. HCA measures
the similarity between every pair of objects with a standardized
m-space Euclidian distance that can be shown as Eq. (1)
(Davis, 1986).

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1ðXik � XjkÞ2

m

s
ð1Þ
(d) As5+

(b) Chlorite

 (f) HAAs

asured groundwater parameters.



Table 2
Correlation matrix of water chemistry components.

Variable Environment parameters Toxic parameters

NPDOC Cl� DO Turbidity Conductivity H.S. pH As3+ As5+ THMs HAAs

NPDOC 1
Cl� .430** 1
DO .327* .261 1
Turbidity .151 .585** �.224 1
Conductivity .374* .948** .218 .690** 1
H.S. .657** .244 .337* .022 .235 1
pH .405** .302 .341 .168 .306 .414** 1
As3+ .320* .270 .004 .228 .308 .160 .402* 1
As5+ .172 .310 .016 �.042 .112 .379* .330* �.050 1
THMs .756** .512** .307 .230 .464** .349* .337* .416** .031 1
HAAs .787** .515** .314* .227 .465** .374* .353* .426** .040 .999** 1

H.S. = humic substances; THMs = trihalomethanes; HAAs = haloacetic acids.
** Correlation significant at p < 0.001.
* Correlation significant at p < 0.05.

Table 3
Factor loadings.

Variable Factor

F1 (salination factor) F2 (pollution factor)

NPDOC .261 .769
Cl� .875 .317
pH .216 .648
DO �.071 .711
Turbidity .884 �.145
Conductivity .925 .261
H.S. .062 .810
% Of variance 45.44 24.41
Cumulative % 45.44 69.86

The bold values are the main components in each factor.

Fig. 3. The results of clustering by us
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in which Xik denotes the kth variable measured on object i and Xjk is
the kth variable measured on object j. A low distance shows the two
objects are similar or ‘‘close together’’, whereas a large distance
indicates dissimilarity.

Because the groundwater environmental parameters are not
independent and there are a large number of correlated environ-
mental parameters, it is difficult to investigate the dominant fac-
tors of toxicity. In this study, the technique of PCA is primarily
used to reduce the number of environmental parameters dimen-
sions and obtain the independent principal components to maxi-
mally account for the variance of the data. These principal
components are then input to the HCA to distinguish the correla-
tion between environmental parameters and toxic substances.
Thus, this paper uses the software package SPSS for Windows to
ing different factor components.



Fig. 4. Distributions of geochemical conditions and toxic pollutants among different clusters. (a) Organic pollution factors; (b) spatial patterns of clustered groups.
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determine the structure in the relationships between groundwater
quality parameters and identify the most important factor(s) con-
tributing to this structure based on the eigen analysis of the corre-
lation matrix. Following the PCA process for grouping the
characteristic parameters of objects, HCA is utilized to explore
the spatial relationships among the objects by examining their dis-
tances. Finally, GIS integrated with the Kriging method is utilized
to visualize the spatial patterns of groundwater quality based on
the inverse distance weighting method.
3. Results and discussion

3.1. Chemical characteristics of observations

Chemical data of 39 analyzed groundwater samples are summa-
rized in Table 1. Groundwater pH was predominantly mildly alka-
line (pH > 7). Electrical conductivity varied widely from 328 to
8607 lS cm�1 and the highest value occurred at a shallow aquifer
next to the Taiwan Strait, especially at sampling sites W-11 and
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W-10 (shown in Fig. 2(b)). Such high electrical conductivity and
high concentrations of Cl� have indicated that seawater has in-
truded into the coastal areas of Taichung City and resulted in com-
plex reactions among chemicals.

According to the results shown in Fig. 2(a), high concentrations
of humic substance, which are considered to be the precursors of
disinfection by-products, are found in the area surrounding the
Guan-Lian industry complex and some sampling sites near the pol-
luted river. It reveals that potential organic pollution may happen
in these areas. The concentrations and spatial distributions of As3+

and As5+ are presented in Table 1 and Fig. 2. The results reveal that
sampling sites which are next to the coastal area and industry
complex contain higher As concentration (>10 g L�1) (Smedley
and Kinniburgh, 2002). Seawater intrusion, geochemical condi-
tions, and pollutant leakage may be the reasons leading to the
difference in spatial distribution of As3+ and As5+.

Looking at Table 2, we see that conductivity, turbidity, and con-
centration of Cl� ions are highly correlated; their correlation coef-
ficients range from 0.585 to 0.690. It reveals that seawater
intrusion may increase the turbidity in groundwater. The forma-
tion of organic toxic pollutants including THMs and HAAs is not
highly correlated to humic substances but to the concentration of
NPDOC. On the other hand, As3+ has a higher correlation than
As5+ to THMs and HAAs. This seems to reveal that a high redox
potential may stimulate the formation of organic by-products.

3.2. Environmental characteristic analysis

This study uses the environmental parameters mentioned
above as the analyzed variables of PCA to define the dominant
principal components (i.e. the dominant dimension of the factorial
space of data representation). As shown in Table 3, a two-factor
model was determined by PCA, in which their percentage of vari-
ance and cumulative percentage of variance explained 69.86% of
the total variance in the data set. The first factor (F1), consisting
of contained Cl�, turbidity, and conductivity, accounted for
45.44% of the total variance. Factor 1 is strongly determined by
the Cl� concentration and conductivity, which are significantly cor-
related to the intrusion of salt water. Then this study named the F1

factor with a new comprehensive title, ‘‘seawater intrusion factor,’’
to make a preliminary identification of the impact area of seawater
intrusion in this area. This F1 would be the input of HCA to classify
the site, then distinguish the correlation between environmental
conditions and toxic substances.

The second factor (F2) contains the variables NPDOC, DO, and
humic substance, and explained 24.41% of the total variance. The
variables contained in F2 reflect the possible leakage of organic pol-
lutants. The results of correlation analysis shown in Table 2 also re-
veal the slight positive dependence of the DO on humic substance
concentrations in the water samples, as well as showing that sam-
pling sites with high humic substance and DO concentration are lo-
cated around the Guan-Lian industry complex (shown in Fig. 2(a)),
thus this result suggests that the main contribution of H.S. is hu-
man activity. Confronted with this situation, factor 2 was denoted
as the pollution factor. Then, these two factors are used to stand for
the distinctive environmental conditions and to explain the spatial
pattern of groundwater pollutants in the study area.

Following the results of PCA, groundwater samples were classi-
fied by HCA into some clusters. As shown in Fig. 3(a), the ground-
water samples were classified by HCA into two main clusters (S1
and S2) according to their dominant chemical composition (Factor
1 in Table 3). In the cluster S2, only the area near the well W11 can
be considered as a seawater injected area with high salinity and
conductivity. Though some sampling sites in the cluster S1 have
high Cl� concentration (shown in Fig. 2(b)), they still statistically
cannot be assumed to be seawater injected areas.
Excluding the cluster S2, 38 groundwater samples are further
segmented into three subgroups (P1, P2, and P3) based on the pol-
lution factors shown in Table 3. The results are shown in Fig. 3(b).
To further explore the influence of geochemical conditions upon
the formation of toxic pollutants, a radar chart is plotted as
Fig. 4(a) in company with a normalization procedure. Surprisingly,
it is noted that samples in cluster P3 have lower quantitative val-
ues for measured parameters than clusters P1 and P2 except tur-
bidity. Low humic substance and NPDOC concentrations seem to
reflect that inorganic matters are the main components of turbidity
in cluster P3. Cluster P1 is similar to cluster P2 with regard to Cl�,
DO, and pH parameters. The notable difference between these two
clusters for environmental parameters is that there is higher or-
ganic substance in cluster P2. These organic matters may stimulate
the formation of HAAs and THMs. However, the heavy disinfection
by-products are not the main source of biological toxicity. Fig. 4(a)
pinpoints that when As3+ increases, increasing the biological toxic-
ity, it implies the As3+ is a major contributor to biological toxicity.

Finally, Kriging interpolation and GIS technologies are utilized
to visualize the spatial pollution patterns of groundwater. Based
on the result of Fig. 4(a), the study area is separated into three
subareas with different groundwater quality conditions. As shown
in Fig. 4(b), the area next to the ocean has higher biological toxicity
dominated by As3+, though some organic pollutants also exist in
this area. Obviously, the transport of arsenic in groundwater is af-
fected not only by the geochemistry but also by human activities
(Karim, 2000; Chakraborti et al., 2010). The area in Fig. 4(b) colored
dark green is where higher organic pollutants such as THMs and
HAAs can be found. It is believed that the pollutant leakage may
happen in this area. However, the biological toxicity in this area
is not higher than the seashore area. Strategies for controlling or-
ganic leakage in this area are required. Groundwater quality in
the light green area is cleaner than other areas, with less organic
substances and arsenics. The turbidity seems to be composed of
nonorganic substances. How to maintain sustainable usage is the
most important issue in this subarea. With the help of GIS and
the Kriging approach, government officials can determine the spa-
tial patterns of groundwater quality as well as plan advanced con-
trol programs corresponding to different quality conditions for
different subareas.
4. Conclusions

To explore the spatial pattern of groundwater quality in the sea-
shore area, this paper presents an integrated analysis procedure
based on PCA and HCA methods. By clustering groundwater water
quality parameters and segmenting the monitoring data, inherent
data complexity and dissimilarity can be mitigated and key influ-
encing factors can serve as a basis for groundwater quality plan-
ning and management for a seashore area like Taichung City. The
proposed algorithm is not only valuable in dealing with the prob-
lem of spatializing the groundwater quality but also in determining
the regional pollution sources for a complicated environmental
system like the study area in this study. This study concludes that
seawater has intruded into the seashore area. In the presence of
Cl�, the amount of toxic substance is obviously increased. High or-
ganic substance and continuing high DO occur in the vicinity of the
Guan-Lian industry complex; this seems to reveal that unexpected
leakage has taken place in this area. Moreover, As3+ is one of the
most dangerous contributors to biological toxicity.
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